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Using Continuous Feature Selection Metrics to 
Suppress the Class Imbalance Problem 

P. Ganesh Kumar, J. Briso Becky Bell  
 

Abstract— The class imbalance problem is a serious problem in machine learning that makes the classifier perform suboptimal during 

data classification. Among the many competent approaches, feature selection is well suited for suppressing the class imbalance problem. 

In this paper four continuous feature selection metrics namely Pearson Correlation Coefficient (PCC), Signal to Noise Ratio (S2N), Feature 

Assessment by Sliding Threshold (FAST) and Feature Assessment by Information Retrieval (FAIR) are developed for producing feature 

sub sets from a small sample datasets and are then evaluated using Support Vector Machine (SVM) classifier. Various Cancer datasets 

available in the National Center for Bioinformatics (NCBI) are used in the experiments. Simulation results using these datasets show that 

the proposed system selects highly relative features and has high classification accuracy. Statistical analysis of the test result shows that 

among the four continuous feature selection metrics, the FAST metric shows relatively better result than the others. 

Index Terms— Class Imbalance Problem, Datasets, Feature Selection, Genome, Hyper-plane, Microarray, Support Vectors.   

——————————      —————————— 

1 INTRODUCTION    

HE class imbalance problem [1] is a difficult challenge 
faced by machine learning and data mining community, a 
classifier model affected by this problem would see strong 

overall accuracy but reduces the poor minority class’s 
performance for specific datasets. This problem occurs in two 
different types of datasets namely Binary class and Multi class 
datasets. The former occurs where one of the two classes is 
comprised of considerably more samples than the other, 
where as the latter occurs when each class only contains a tiny 
fraction of the samples. Datasets meeting one of the two above 
criteria have different misclassification costs for the different 
classes. There are a large number of real-world applications 
[2], [3] that give rise to datasets with an imbalance in classes. 
Examples of these kinds of applications include medical 
diagnosis, biological data analysis, text classification, image 
classification, web site clustering, fraud detection, risk 
management, automatic target recognition, and so on.  

There are many techniques to combat the class imbalance 
problem. They fall in one of the three approaches namely Re-
sampling, New Algorithms and Feature Selection. Re-
sampling methods [4] strategically remove majority samples 
and add minority samples to an imbalanced dataset to bring 
the distribution of the dataset nearer to the optimal 
distribution. New algorithms [5] approach the imbalanced 
problems differently than standard machine learning 
algorithms; these include one-class learners [6], bagging and 
boosting methods [7] and cost-sensitive learners [8]. Feature 
selection method [9] selects a small subset of the original 
feature set to reduce the dimensionality of the dataset and 
facilitate better generalization of training samples. 

 

Feature selection is one technique which is well suited for 
class imbalance problem, since it selects a subset of features so 
to be induced by classifier to reach an optimal performance. 
On Foremen [10] found that clever induction cannot be made 
accurately when there is a lack of productive input space, 
which shows that in high-dimensional datasets feature 
selection alone can combat the class imbalance problem.   

In order to solve the class imbalance problem many feature 
selection methods were experimented, when Elkan [11] found 
that some of the applied feature selection methods did not 
consider some highly correlated features, as most of the 
features selected were thought to be redundant.  Then the 
serial problem was most of the researchers thought that 
selecting highly relevant features were only useful, but Guyon 
and Elisseeff [12] showed that irrelevant features on their own 
can be useful in conjunction with other features, and the 
combination of two highly correlated features can be better 
than  considering any of the one feature separately.  

Loughrey and Cunningham [13] considered a feature 
interaction in the selection process, using Wrappers and 
embedded methods as subset feature selection methods. But 
this method the subset found is severely over-fits the training 
data and causes much worse performance than the baseline 
performance. And they cannot find the best feature subset as 
the algorithm has high runtime for selecting the optimal 
feature set and it is inflexible for high-dimensional data. 
Whereas Guyon and Elisseeff [12] found that by using feature 
selection metrics on high dimensional data sets avoids both of 
these problems, as these metrics are robust against over-fitting 
and considerably has a linear runtime with the size of the 
feature set. 

 Zheng et al. [14] classified the feature selection metrics in 
to two based on the way they access the classes. He considered 
the Positive features indicate the membership of a class and 
negative features indicate the lack of membership to a class. 
One-sided metrics only select positive features on their score, 
and two-sided metrics selects both positive and negative 
features based on the absolute value of their score. While 
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Foreman [10] noted that when using evenly balanced form of 
Bi-Normal Separation (BNS) to select features with equal 
weight to true and false positive rates, gave best performance. 

The overall aim of the paper is to develop four continuous 
feature selection metrics and to evaluate their performance by 
inducing the selected features in a classifier which makes the 
classifier to perform optimally by suppressing the class 
imbalance problem. The structure of the rest of this paper is 
described as follows. Section 2 briefly introduces about the 
current feature selection approaches taken to suppress class 
imbalance problem. In Section 3, the various experimental 
setups we used are presented. Details of the classification 
algorithms and their implementation issues are discussed in 
Section 4. Simulations conducted using 10 benchmark datasets 
and the results are reported in Session 5. Concluding remarks 
are given in Section 6.  

2 FEATURE SELECTION APPROACHES 

According to Chen and Wasikowski, [1] the current feature 
selection metrics are classified in to Binary and continuous 
feature selection metrics, by considering the way they 
accessed the type of data.  

2.1 Binary Feature Selection (BFS) 

Binary feature selection metrics [1] can handle only binary 
data. In binary feature selection metrics binary data is used so 
to ensure that no metric had an advantage because of a 
feature’s structure as it is discrete. Because the datasets we 
studied consist of continuous data, so preprocessing of data 
before applying these metrics is done. Finding the mean 
feature value for the two classes, then set a threshold at the 
midpoint between the two mean values. The features are then 
converted into binaries according to a threshold value, so its 
performance is entirely dependent on the choice of the preset 
threshold used for converting in to binaries. This threshold 
determines the confusion matrix’s true positive (TP), false 
negative (FN), false positive (FP), and true negative (TN) 
counts.  

2.1.1 CHI Square Test (CHI) 

CHI [10] uses a statistical test for feature selection. It measures 
the independence of a feature from the class labels based on 
the confusion matrix. This happens by assuming that there is a 
non-zero probability for an exact value to be drawn from the 
distribution, which leads to extremely small expected counts 
of feature values.  It is a two-sided metric.  

2.1.2 Information Gain (IG) 

IG [14] is a feature selection metric which measures the 
decrease in entropy of the class labels while using a feature. 
We calculate the entropy of a random variable (class labels) 
which grows as the proportion of samples approaches fully 
balanced. The conditional entropy measures the remaining 
uncertainty for a random variable. Then we simply subtract 
the entropy and conditional entropy to get IG. This measure is 
two-sided. 

2.1.3 Odds Ratio (OR) 

OR [10] is a descriptive test which analyzes the occurrence of 
an event by considering an already occurred event. In machine 
learning, it is used to quantify the change in odds of a sample 
drawn from a class, given a feature’s values. We find the odds 
of a feature occurring in the positive class and normalize by 
the odds of the feature occurring in the negative class. Then 
we calculate the change in odds, OR can be either one-sided or 
a two-sided.  

 2.2 Continuous feature selection (CFS) 

Continuous feature selection metrics [1] are designed to 
operate on continuous data and they do not require any 
preprocessing.   

2.2.1 Pearson Correlation Coefficient (PCC) 

PCC [15] is a statistical test that measures the quality and 
strength of the relationship between two variables. The 
coefficients can range from −1 to 1. The absolute value of the 
coefficient closer to 1 indicates a stronger relationship. The 
sign of the coefficient gives the direction of the relationship. If 
it is positive, then the two variables increase or decrease with 
each other, when it is negative, one variable increases as the 
other decreases. Here the covariance and the variances of 
feature (Xi) and the target (Y) are taken, then correlation can 
be calculated directly. It can be made as either one-sided or 
two sided metric. The PCC is calculated by formula given in 
(1). 
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2.2.2 Signal to Noise (S2N) 

The signal-to-noise ratio [1] is originally a concept in electrical 
engineering. It is the ratio of a signal’s power to the power of 
the noise present in the signal. If a signal has a lot of noise 
present, it is much more difficult to isolate the signal. It 
compares the ratio of the difference between the class means 
to the sum of the standard deviations for each class. For a 
feature, if the two class means are distant, there is a less 
chance of a sample to be from other class. If the class means 
are close, there is a high chance of mislabeling or else if the 
standard deviation is larger or smaller it scales the distance 
appropriately. It is a one-sided metric. The formula for 
calculating S2N is given in (2). 
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2.2.3 Feature Assessment Techniques 

Here we slide the decision boundary, in order to increase the 
number of true positives and to find the expense of classifying 
more false positives. When sliding the threshold to decrease 
the number of true positives found in order to avoid 
misclassifying negatives. Thus, no single choice for the 
decision boundary may be ideal for quantifying the separation 
between two classes. So it is fruitful to use a feature selection 
metric that is a non-parametric one, thus using all possible 
confusion matrices states when using continuous data.  
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Thus, it would be possible to find the threshold that result 
in the highest performance. There are two non parametric 
measures they are ROC and Precision-Recall (P-R) curves. If 
we calculate the area under the curve for these measures the 
resultant metrics are FAST and FAIR.  

2.2.3.1 Feature Assessment by Sliding Threshold 
(FAST)  

In FAST, [15] classification of the samples based on multiple 
thresholds and gathering statistics on the performance at each 
boundary is done. Here we calculate the True Positive Rate 
(TPR) and False Positive Rate (FPR) at multiple thresholds 
using (3) & (4), for this we need to find the total number of 
True Positives (TP), False Positives (FP), True Negatives (TN) 
and False Negatives (FN) then we build an ROC and calculate 
the Area Under the Curve (AUC). Because the AUC is a strong 
predictor of performance, it is especially suited for imbalanced 
data classification problems. This score can be used for feature 
ranking, while choosing the features, take the highest AUC’s 
as they have the best predictive power for the dataset. The 
area can be found by formula (5). It is a two-sided metric. 
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2.2.3.2 Feature Assessment by Information Retrieval 
(FAIR) 

The major deviation of FAIR [15] from FAST was the use of P-
R curve instead of the ROC as our non-parametric statistic. 
The PRC [16] are vastly different and strongly indicate the use 
of one algorithm over the other. This modification is called 
Feature Assessment by Information Retrieval (FAIR) because 
it uses the information retrieval standard evaluation statistics 
of precision and recall to build the curve. FAIR is a two-sided 
metrics. For the P-R curve, we simply take a parallel 
tabulation of the precision and recall for the majority class, 
build the P-R curve from these values, and take the maximum 
area. Precision and recall can be calculated using formulas (6) 
& (7). Then area under the P-R curve can be calculated using 
formula (5). 
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When comparing the binary metrics effects with the 
continuous metrics. Binary metrics fully depend on single 
threshold value thus making the performance change in every 
threshold.  

 

As binary feature selection metrics needed much 
preprocessing in continuous data it is not the most preferred 
metric. 

3 EXPERIMENTAL SETUP 

In this paper, we compare the performance of example various 
continuous feature selection methods to show which of these 
approaches best manages the challenges posed by imbalanced 
data sets. We will look at the performance of different feature 
selection metrics on microarray. We aim to inform data 
mining practitioners which continuous feature selection 
metrics would be worthwhile to try and which they should 
not consider using it. While measuring the performance 
standards of metrics, we use certain classifiers and non 
parametric measures to evidently know the better performed 
metrics over the disease sample dataset. In order to solve the 
problem we developed four continuous feature selection 
metrics such as PCC, S2N, FAST and FAIR for to select the 
highly relevant feature. We also used the integrated classifiers 
such as SVM, K-Nearest Neighbor (K-NN) and Naïve 
Bayesian to induce the test samples. We also obtained various 
small sample high dimensional imbalanced datasets of 
biological domain for to be used as input in our system. Then 
we developed a non parametric statistical measure to find the 
overall goodness of the classifiers using AUC-ROC measure. 
                                             

 

 

 

 

 

 

 

 

 

 

The high dimensional imbalanced microarray datasets are 
input to the system and we used the continuous feature 
selection metrics for to select the most expressive genes. These 
metrics selects highly related features in a dataset forming 
reduced feature size. Then the reduced feature dataset is used 
to induce a classifier. And the performance of the classifiers 
effect on classification is measured so to assess the metrics 
efficiency on classification. The architecture of the proposed 
system is illustrated in fig.1

High Dimensional Imbalanced microarray datasets 

 

Reduced input genes 

FAST Metric FAIR Metric S2N Metric PCC Metric 

Induction method 

Performance Evaluation 

 

 

Fig. 1. Architecture of the proposed system 
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3.1 microarray sample datasets 

In the field of molecular biology, gene expression profiling 
[17] or microarray technology is the measurement of 
expression of thousand of genes simultaneously to study the 
effects of certain treatments, diseases, and development stages 
on expression. There are a variety of microarray platforms that 
have been developed to accomplish this and the basic idea for 
each is simple: a glass slide or membrane is spotted or 
―arrayed‖ with DNA fragments that represent specific gene 
coding regions. Purified RNA is then fluorescently or 
radioactively labeled and hybridized to the slide/membrane. 
After thorough washing, the raw data is obtained by laser 
scanning or auto radiographic imaging. Thus the raw 
microarray data are images, which are transformed into m*n 
gene expression matrices as shown in the Table 1.  

Each row in the data matrix represents a sample that 
consists of m number of genes G from one experiment. Each 
sample S belongs to certain class (normal/disease). In each 
data set the researchers repeated the same experiment on n 
different volunteers, each line in this data set representing the 
volunteer sample S. The numbers in each cell characterize the 
expression level of the particular gene in particular sample. 
The Microarray datasets are affected by two kinds of serious 
problem, high dimensional problem and class imbalance 
problem. The first occurs due to the ultra high dimensionality 
nature of microarray data, considering a typical gene 
expression profiling experiment produces expression level of 
2,000-30,000 genes for about 40 to 200 samples. Dimensionality 
reduction has drawn special attention for such type of data 
analysis. Among tens of thousands of genes in experiment, 
only a smaller number of them show strong correlation with 
the targeted phenotypes. Also, recent researchers have shown 
that the number of genes varies greatly between different 
diseases, a small number of genes are sufficient for accurate 
diagnosis of most of the diseases. Thus computation is 
reduced while prediction accuracy is increased via 
dimensionality reduction. 

 Secondly, the class imbalance problem occurs when the 

constraint 2x = n becomes true, where the x ranges from 1 < x 
≤ n-1 is the variable that determines the number of samples in 
class I as shown in table I. Further based on x’s range, the 
imbalance pattern divided in to two. In case one x ranges from 
1 < x ≤ (n-1)/2, then the class I becomes minority class and 
class II becomes majority class and in case two it ranges 
between (n+1)/2 < x ≤ n-1, then the class I becomes majority 
and class II becomes minority, thus class imbalance problem 
prevails due to the unequal number of samples in each of the 
two classes at both cases. Thus feature selection acts as remedy 
for high dimensional problem also enhances in suppressing 
the class imbalance problem. 

3.2 Classification Schemes 

Classification [18] is a two step process containing model 
construction and modal usage, in modal construction is done 
on set of samples having predetermined classes called the 
training set. During modal usage is used for classifying 
unknown samples, where the known label of test sample is 
compared with the classified result from the model. Accuracy 
rate is the percentage of test set samples that are correctly 
classified by the model. 

 On accounting the performance evaluation of classifiers 
acting in extremely imbalanced datasets environment, 
algorithms will be hardly pressed for to classify test samples 
as members of the minority class, because the scores are 
discriminate given by the classifier are often biased toward the 
majority class. Accuracy is clearly a poor measure of the 
performance of a classifier on imbalanced data. Usually there 
is still some separation in the probabilities between classes. In 
order to compare across all possible thresholds, try to quantify 
the strength of a classifier with a nonparametric measure. The 
ROC and P-R curves will allow us to find the strength of a 
classifier at each possible threshold.  

There are a lot of classifiers commonly used in machine 

learning, and classifiers perform differently with the exact 

same feature set. Thus, to measure the quality of a feature 

selection metric, it is not sufficient to simply select one 

classifier. So evaluate the feature set on different classifiers 

with different biases to truly measure the strength of a feature 

selection method. On previous research in feature selection for 

imbalanced data numerous different types of classifiers 

providing varying degree of performance have been used. 

According to the classification scores of the classifiers a 

confusion matrix is plotted as in table 2, and the classifier’s 

accuracy is calculated using formula given in (8).  

TABLE 2  
CONFUSION MATRIX   

 Actual Positive Actual Negative 

Predicted Positive True Positive False Positive 

Predicted Negative False Negative True Negative 

TABLE 1 
GENE EXPRESSION DATA MATRIX WITH IMBALANCED CLASSES 

S G1 G2 … Gm-1 Gm Class 

S1 96.42 21.43 … 71.59 40.71 I 

S2 38.42 29.19 … 37.06 31.15 I 

S3 98.6 43.12 … 54.7 12.4 I 

… … … … … … … 

Sx-1 8.4 9.19 … 3. 6 13. 51 I 

Sx 9.6 4. 2 … 5.7 21.3 I 

Sx+1 5.24 6.57 … 6.41 3.78 II 

… … … … … … … 

Sn-1 54.25 67.52 … 16.46 37.68 II 

Sn 21.72 38.05 ... 12.42 26.41 II 

Class I having x samples, where x ≥ 1.  
Class II having n-x samples, where x ≤ n-1 and 2x 
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3.3 Non Parametric measure evaluation 

The performance evaluation can be done by Receiver 
Operating Characteristics (ROC) and the P-R curve. We use 
the ROC [19] curve for to measure the overall goodness of a 
classifier across all possible discrimination thresholds between 
the two classes.  Classifiers give not only a classification for a 
sample, but also a quantity representing how confident the 
algorithm is of these results. Using the confidence values for 
the samples, we can calculate statistics using the 
discrimination threshold between each pair of samples. The 
ROC calculates the true positive and false positive rates. The 
pairs of rates can then be plotted to form the ROC curve. 
Using the raw curves to choose the proper threshold for best 
classification is difficult, but we can use the curve to get one 
number that quantifies the strength of a classifier. The area 
under ROC curve is the evaluation statistics used to evaluate 
classifier. 

4 CLASSIFICATION ALGORITHMS 

The feature selection affects different classifiers, but linear 
SVM [1] is fairly resistant to feature selection and can show 
improved results. On the other hand, feature selection has a 
stronger influence on the K-Nearest neighbor and Naïve Bayes 
classifiers. So the best feature selection metrics should be able 
to help a classifier perform better in despite of the inherent 
resistance.  

4.1 Support Vector Machine 

The SVM [20] is better suited to imbalanced data class 
problem since, only support vectors are considered in 
classification. It considers a subset of all data from both classes 
and the optimum hyper-plane is selected, at each of the 
iterations. The subsets can be formed such that there is no 
imbalance in the training. It has the simplest way to classify 
points into two classes. At first assume that the classes can be 
linearly separated from each other, by this assumption we can 
easily discriminate between the samples in each class without 
knowing anything about the distribution of training samples.  

It uses a linear equation for discriminating while 
classifying. To learn about linear discriminating principle of 
the classifier, we only need to know about the parameters 
such as weight vector and the bias. One problem with learning 
linear discriminating principle is that there are many different 
weight vector and bias combinations that could correctly 
classify the training data. If each of these is correct, then we 
have to select any one of these discriminating threshold. In 
SVM, the best discriminating threshold is that it maximizes 
the distance from the separating hyper-plane formed by the 
discriminating the samples on both sides. If such a hyper-
plane is formed, it is called the optimal separating hyper-plane 
or the maximum-margin hyper-plane. 

 

 Here we start with a set of data X = {(xi, ci)}, where each xi 
is a training sample and ci is set of associated samples for to be 
classified and the hyper-plane is written using equation wTx + 
w0 = 0. The goal is to select the weight vector and bias that 
separate the data at maximum limit. If the two parallel hyper-
planes is having the maximum margin then it is expressed as 
wTx+w0 = ±1. This procedure is account for each sample of the 
classes in ci by seeing weather all wTxi + w0 ≥ 1. 

4.2 Naïve  Bayes Classifier  

In Naïve Bayes classifier [8] instead of finding a single 
discriminant and using that as a classifier, we can suit a 
probability model using the features as conditions for the 
probability of a sample being drawn from a class. In a 
probability model, we would like to find p(C|F1, . . . , Fn), 
where each Fi is the value for each feature and C is the class of 
the sample. This is commonly called the posterior. Once we 
have the posterior for each class, we assign a sample to the 
class with the highest posterior. It is difficult, if not impossible, 
to find the posterior directly. However, if we use Bayes’ rule, 
we can express the posterior as a ratio of the prior times the 
likelihood over the evidence. Formally, this is expressed as 
given in (9). 

       
)F , . . . ,p(F

 C)|F , . . . ,p(C)p(F
 = )F , . . . ,F|p(C

n1

n1
n1

                
(9)

 

4.3 Nearest Neighbor 

The nearest neighbor algorithm [21] is an instance-based Lazy 
learning algorithm, which defer the computation for 
classifying a sample until a test sample is ready to be 
classified. It meets the criteria by storing the entire training set 
in memory and calculating the distance from a test sample to 
every training sample at classification time; the predicted class 
of the test sample is the class of the closest training sample. 

The nearest neighbor algorithm is a specific instance of the 
k-nearest neighbor algorithm where k = 1. In the k-nearest 
neighbor algorithm, when we get a test sample we would like 
to classify, we tabulate the classes for each of the k closest 
training samples and predict the class of the test sample as the 
mode of the training samples’ classes. The mode is the most 
common element of a set. In binary classification tasks, k is 
normally chosen to be an odd number in order to avoid ties. 
Selecting the best value of k is difficult, and it is even more 
problematic when dealing with imbalanced data. The 
imbalance between the two classes makes it likely that more of 
the k nearest training samples will be found in the majority 
class as k increases. We used k <= 5 because this value is the 
most fair to the minority class. Nearest neighbor algorithms 
can use any metric to calculate the distance from a test sample 
to the training samples. A metric is a two-argument function 
d(x, y). The standard metric used in nearest neighbor 
algorithms is Euclidean distance which is given in (10). 
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5 SIMULATION RESULTS 

In this project the binary datasets are given as inputs and the 
feature selection metrics are acted on those dataset so that an 
constrained set of selected features were extracted out of all 
features and performance of the metrics were evaluated using 
AUC by learning those selected features on classifiers. This 
system has been developed and implemented in MATLAB 
tool and it is worked under Windows 7 OS with Core i3-370M 
Processor environment. We have accounted some of our 
results here. 

5.1 Dataset Selection 

The various small sample cancer datasets are downloaded 
from NCBI are used in the experiments. The data taken as 
input are various microarray binary class disease sample gene 
expression datasets.  The details of those datasets are 
tabulated in table 3. 

5.2 Feature Ranking 

PCC, S2N, FAST and FAIR are four continuous feature 
selection metrics used to select the most expressive genes. In 
which each of the feature selection metrics is trained on 
leukemia binary class dataset with 7129 genes and 72 samples. 

The metrics holding their coefficient values for each 
feature, with number of features on X-axis and correlated 
coefficient values on the Y-axis are taken for PCC and S2N 
respectively. For PCC and S2N ratios the features having 
maximum coefficient values are taken as top features. In FAST 
and FAIR metrics the threshold area values are taken for each 
of the features. Here by taking the number of features on X-
axis the relative threshold area values are plotted on the Y-axis 
for both the metrics are shown in Fig. 2 respectively.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

TABLE 3 
DETAILS OF GENE EXPRESSION DATASET 

Dataset Samples Genes 
Class I 

samples 

Class II 

Samples 

Leukemia 72 7129 ALL(47) AML(25) 

Colon Cancer 62 2000 N(22) T(40) 

Lymphoma 45 4026 CGL(23) ACL(22) 

Prostate Cancer 33 12,626 N(9) T(24) 

RAOA 31 18,432 RA(22) OA(9) 

RAHC 33 4000 RA(18) HC(15) 

T2D 34 19,319 DM2(17) NGT(17) 

Ovary Cancer 24 54,675 N(12) T(12) 

Breast Cancer 36 13,267 N(18) T(18) 

Pancreatic Cancer 52 54,613 N (16) T(36) 

Carcinoma 36 7457 N(18) T(18) 

ALL- Acute Lymphoblast Leukemia, AML- Acute Myeloid Leukemia, CGL- 

Germinal Centre B-Like, ACL- Activated B-Like, RA- Rheumatoid Arthritis, 

OA- Osteoarthritis. HC- Healthy Controls, DM2- Diabetes Mellitus 2, NGT- 

Normal Glucose Tolerance, N-Normal, T- Tumor. 

 
  

 

Fig. 2. Feature selection metrics showing correlated coefficient 
values for each feature PCC, S2N, FAST, FAIR.  
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On selecting the top most expressive genes a classifier can 
induce higher accuracy scores, so we took top 10 features for 
various feature selection metrics in Leukemia data.  

We have obtained highly relative non redundant genes 
without over fitting. By seeing the correlated coefficient value  

of PCC, S2N metric and the threshold area values  of FAST 
and FAIR metrics we assigned the rank to each of features. We 
have displayed the top 10 features along with Gene no, Gene 
ID, description and coefficient values in table 4 as same as the 
model used at [22].The top 10 features selected by higher areas 
in FAST metric are shown in table 5. 

5.3 Classification Task Data Setup 

The feature scores of the top 10 genes are separated in 50:50 
ratio based on number of samples and the class of the samples.  

Here, the first half is taken as training set and the next half 
is taken as test set as shown in table 6, the test data sets are 
eventually in process of forming a class imbalance ratio. 

5.4 classification task assessment 

The classifiers used for classification task is SVM, K-NN and 
Naïve Bayes techniques. While training and testing the 
Leukemia data’s top 10 feature score using SVM as classifier, 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
the results produced are shown   in fig 3. In a feature space 
containing intensities of first feature to the intensities of next  

TABLE 4 
MOST EXPRESSIVE GENES SELECTED BY PCC METRIC 

Gene 
no 

Gene ID Gene Description 
Co-

efficient 
value 

Rank 

2242 
M80254_

at 
PEPTIDYL-PROLYL CIS-
TRANS ISOMERASE  

0.575 1 

2402 
M96326_
rna1_at 

Azurocidin gene 0.568 2 

4196 
X17042_

at 
PRG1 Proteoglycan 1, 
secretory granule 

0.548 3 

3258 
U46751_

at 

Phosphotyrosine 
independent ligand p62 for 
the Lck SH2 domain mRNA 

0.546 4 

6919 
X16546_

at 
RNS2 Ribonuclease 2  0.527 5 

3320 
U50136_
rna1_at 

Leukotriene C4 synthase  0.509 6 

4377 
X62654_
rna1_at 

ME491  gene extracted from 
H.sapiens gene for 
Me491/CD63 antigen 

0.501 7 

2056 
M58603_

at 

NFKB1 Nuclear factor of 
kappa light polypeptide 
gene enhancer in B-cells  

0.493 8 

1260 
L09717_

at 

LAMP2 Lysosome-
associated membrane 
protein 2  

0.493 9 

3301 
U49248_

at 
Canalicular multispecific 
organic anion transporter  

0.486 10 

TABLE 5 
MOST EXPRESSIVE GENES SELECTED BY FAST METRIC  

Gene 
no 

Gene ID Gene Description 
Co-

efficient 
value 

Rank 

4271 
X54938_

at 
'TPKA Inositol 1,4,5-
trisphosphate 3-kinase A 

0.0007 1 

2688 
U08316_

at 

GB DEF = Insulin-
stimulated protein kinase 1 
mRNA 

0.0069 2 

2111 
M62762

_at 
ATP6C Vacuolar H+ ATPase 
proton channel subunit 

0.0069 3 

6285 
U05681_

s_at 
Proto-oncogene BCL3 gene 0.0069 4 

2402 
M96326
_rna1_at 

Azurocidin gene 0.0069 5 

4903 
X99140_

at 
GB DEF = Hair keratin, 
hHb5 

0.0069 6 

2267 
M81933

_at 
CDC25A Cell division cycle 
25A 

0.0069 7 

1882 
M27891

_at 
CST3 Cystatin C  0.0069 8 

5618 
S79862_

s_at 
26 S protease subunit 5b 0.0069 9 

7037 
HG2917-
HT3061

_f_at 

Major Histocompatibility 
Complex, Class I, E  

0.0068 10 

TABLE 6 
TEST AND TRAIN SAMPLES FOR LEUKEMIA DATA 

 
Total 

Sample 
Class1 

Samples 
Class2 

Samples 

Total Data 72 47 25 

Train Data 37 24 13 

Test Data 35 23 12 

 

Fig. 3. SVM Classification for Feature Selected Data by PCC 
and S2N metrics.  
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feature for the same sample set are plotted in X -axis and Y -
axis respectively, during training support vectors and an 
optimized hyper-plane is created and classification of test 
samples are done based on the predicted support vectors on 
either side of hyper-plane as positive and negative. We also 
quantified the classification task using non parametric 
measure ROC as to know the class imbalance effect during 
classification process. 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

The ROC graph plotted for the feature selection metrics is 
illustrated on fig 4. Here, FPR is taken along X-axis and TPR 
along Y-axis. 

The accuracy produced by various classifiers is found by 
comparing the actual class with the predicted class of test 
samples and are shown in table 7.  

5.5 Performance comparison between various disease 
datasets 

We operated the various datasets on various feature selection 
metrics to the classifier approaches and found the best suited 
metrics-classifier approach for the disease sample.  

We also compared our results on classification with the 
other approaches’ results are shown as tabulation 8.  
 

 

TABLE 8 
PERFORMANCE COMPARISON OF VARIOUS APPROACHES 

Datasets Approaches 
Accuracy 

(%) 

Colon 
Cancer 

SVM (Shi and Chen, 2005) 
PCC in Naïve Bayes 

91 
96.77 

Leukemia 
Single NF (Wang et. al., 2006) 
S2N in SVM 

87.5 
95.65 

Lymphoma 
NFE (Wang et. al., 2006) 
PCC, S2N in SVM, KNN, Naïve Bayes;  

FAIR in Naïve Bayes 

95.65 
 

100 

Prostate 
Cancer 

k-TSP (Tan et. al., 2005) 
PCC, S2N, FAST in SVM, KNN, Naïve 

Bayes;  FAIR in Naïve Bayes 

75 
 

100 

RAOA 
KNN (Maji, 2010) 
PCC, S2N in SVM, KNN, Naïve Bayes 

90 
100 

RAHC 
SVM (Maji, and Pal, 2010) 
PCC in KNN; S2N in Naïve Bayes 

100 
100 

T2D 
Linear SVM (Ding, and Zhang,2010) 
PCC, S2N in Naïve Bayes; S2N in SVM 

90 
100 

Ovary 
Cancer 

DT (Osareh, and Shadgar, 2010) 
PCC, S2N in SVM, KNN, Naïve Bayes;  
FAST, FAIR in Naïve Bayes 

81 
 

100 

Breast 
Cancer 

Association Analysis (Fang et. al., 2010) 
PCC in SVM, KNN, Naïve Bayes; S2N 

in KNN 

90.72 
 

100 

Pancreatic 
Cancer 

PCC, S2N in Naïve Bayes 100 

Carcinoma 
kNND-ME (Fujibuchi and Kato, 2007) 
PCC, S2N, FAST, FAIR in SVM, KNN, 
Naïve Bayes 

83.3 
 

100 

 

 

 

 

 

 

 

 

 

 

 

TABLE 7 
TEST AND TRAIN SAMPLES FOR LEUKEMIA DATA 

Metrics 

Classifiers accuracy (%) 

SVM KNN 
Naïve  
Bayes 

PCC 90.32 90.32 85.71 

S2N 95.65 82.86 93.55 

FAST 91.43 88.57 88.57 

FAIR 91.43 88.57 91.43 

 

Fig. 4 . ROC Curve Showing Feature Selection Metrics 
Performance in SVM, KNN and Naïve Bayes Classifiers on 
Leukemia Dataset 
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5 CONCLUSION  

Thus the goal is to show the effectiveness of various 
methodologies of suppressing class imbalance on any 
classifiers is evaluated using AUC statistics for the various 
feature section metrics. The evaluation technique makes users 
for to select suitable metrics while learning suitable genomic 
datasets while lowering the ratio of Imbalance classes. Also 
highly optimized features are selected by verifying over-fitting 
and redundant occurring problems in samples.  
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